Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus
نویسندگان
چکیده
Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.
منابع مشابه
Tubulin C-terminal Post-translational Modifications Do Not Occur in Wood Forming Tissue of Populus
Cortical microtubules (MTs) are evolutionarily conserved cytoskeletal components with specialized roles in plants, including regulation of cell wall biogenesis. MT functions and dynamics are dictated by the composition of their monomeric subunits, α- (TUA) and β-tubulins (TUB), which in animals and protists are subject to both transcriptional regulation and post-translational modifications (PTM...
متن کاملAn investigation on the possibility of use of chlorophyll fluorescence to study the stomatal behaviour in plants under drought stress
Stomata play a key role in the control of plant water relations and photosynthesis. A rapid non-destructive method to study the stomatal behaviour in aerial parts of plants is important for researchers in plant sciences and agricultural fields. Stomata close in response to drought stress. Stomatal closure causes lower availability of CO2 inside the leaf and thus a decrease in the rate of carbox...
متن کاملEctopic expression of C-terminal tubulin variants alters wood composition and structure in Populus
Cortical microtubules are cytoskeletal components that are relevant to the bioenergy and forest products industry due to their postulated role in orchestrating cellulose microfibril deposition during cell wall formation. The microtubule component proteins a(TUA) and b-tubulins (TUB) are encoded by multi-gene families with very high overall sequence homology across species. To advance our initia...
متن کاملThe Effect of the Crocus Sativus L. Carotenoid, Crocin, on the Polymerization of Microtubules, in Vitro
Objective(s): Crocin, as the main carotenoid of saffron, has shown anti-tumor activity both in vitro and in vivo. Crocin might interact with cellular proteins and modulate their functions, but the exact target of this carotenoid and the other compounds of the saffron have not been discovered yet. Microtubular proteins, as one of the most important proteins inside the cells, have several functio...
متن کاملDrought induces alterations in the stomatal development program in Populus
Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal con...
متن کامل